无码成人A片在线观看,性欧美videofree高清变态,中文字幕有码无码av,国产无人区卡一卡二扰乱码 ,最近高清日本免费

您現(xiàn)在的位置: 通信界 >> 測試儀表 >> 技術(shù)正文  
 
基于PID控制的導(dǎo)彈分通道仿真[圖]
[ 通信界 / 電子設(shè)計工程 / www.k-94.cn / 2011/8/17 18:53:04 ]
 

1 引言
    現(xiàn)代高性能作戰(zhàn)飛機普遍采用推力矢量技術(shù),各種高空高速高機動再人彈頭的威脅愈顯突出,這對傳統(tǒng)氣動舵控制的導(dǎo)彈系統(tǒng)提出新的要求,F(xiàn)代導(dǎo)彈要求能夠選擇攻擊目標(biāo),具有一定的抗干擾能力,實現(xiàn)全天候作戰(zhàn),這使得導(dǎo)彈向高精度、高智能、輕小型化發(fā)展;同時,導(dǎo)彈制導(dǎo)控制精度的提高已從制導(dǎo)轉(zhuǎn)向控制。導(dǎo)彈目標(biāo)范圍不斷擴(kuò)大,由反飛機擴(kuò)大至反巡航導(dǎo)彈、反彈道式導(dǎo)彈等反導(dǎo)任務(wù)。高空、高速、大機動已成為當(dāng)今導(dǎo)彈目標(biāo)的重要特征,目標(biāo)的高速大機動特征導(dǎo)致彈一目相對運動加劇,對導(dǎo)彈末端過載提出很高要求;另一方面,目標(biāo)的高空特征導(dǎo)致導(dǎo)彈系統(tǒng)效率大大降低,可用過載隨高度的升高而大幅下降。為了解決這些矛盾,這里采用PID控制方法控制導(dǎo)彈的俯仰、偏航、滾動3個通道。

2 模型的建立

研究導(dǎo)彈制導(dǎo)問題,必須以一定的數(shù)學(xué)模型為基礎(chǔ)。因此,在選擇適當(dāng)?shù)淖鴺?biāo)系后,分析推導(dǎo)出導(dǎo)彈的分通道的理想控制運動學(xué)模型,并建立舵機模型。

2.1 分通道的理想控制動力學(xué)方程

導(dǎo)彈由于存在滾動角,會造成耦合現(xiàn)象,從而增加控制困難,降低控制精度,故應(yīng)盡量減少耦合,分通道控制。由于導(dǎo)彈的對稱性,當(dāng)滾動角為零或較小時,忽略俯仰與偏航的耦合,即單輸入單輸出系統(tǒng)。因此可用經(jīng)典控制理論分通道來研究、分析和設(shè)計導(dǎo)彈的控制系統(tǒng)。

縱向運動為導(dǎo)彈縱向動力學(xué)方程為:

基于PID控制的導(dǎo)彈分通道仿真

式中,基于PID控制的導(dǎo)彈分通道仿真為切向力,基于PID控制的導(dǎo)彈分通道仿真為法向力,基于PID控制的導(dǎo)彈分通道仿真為俯仰力矩,m為導(dǎo)彈質(zhì)量,V為導(dǎo)彈的飛行速度矢量,α為攻角,θ為彈道的傾角,δz為俯仰舵偏角,ωz為導(dǎo)彈繞彈體坐標(biāo)系oz1軸的角速度,X,Y為彈上的總空氣動力沿速度坐標(biāo)系分解的阻力、升力,Jz為導(dǎo)彈繞彈體坐標(biāo)系oz1軸的轉(zhuǎn)動慣量,Mz為俯仰力矩。

而側(cè)向運動為航向和橫向相互交聯(lián)耦合,則導(dǎo)彈側(cè)向動力學(xué)方程為:

基于PID控制的導(dǎo)彈分通道仿真

式中,-mVcosθ(dψv/dt)為導(dǎo)彈質(zhì)心加速度的水平分量,“-”表示向心力為正,所對應(yīng)的ψv為負(fù),反之亦然。它是由角度正負(fù)號定義所決定的,dωx/dt、dωy/dt為導(dǎo)彈轉(zhuǎn)動角加速度矢量在彈體坐標(biāo)系軸上的分量,Jx、Jy、Jz分別為導(dǎo)彈繞彈體坐標(biāo)系ox1、oy1、oz1軸的轉(zhuǎn)動慣量,Mx、My分別為滾轉(zhuǎn)力矩和偏航力矩,Y、Z分別為彈上的總空氣動力沿速度坐標(biāo)系分解的升力、側(cè)向力,ωx、ωy、ωz分別為導(dǎo)彈繞彈體坐標(biāo)系ox1、oy1、oz1軸的角速度。

2.2 舵機模型

2.2.1 電動機模型建立

電動機控制原理圖如圖1所示。

基于PID控制的導(dǎo)彈分通道仿真

設(shè)減速比i,總轉(zhuǎn)動慣量J,力矩M,輸入電壓u,電流I,電感L,電阻R,鼓輪的角速度與轉(zhuǎn)角分別為ω和δk,舵偏角δ,電動舵機的力矩特性近似為A,機械特性近似為-B,Mj是鉸鏈力矩,基于PID控制的導(dǎo)彈分通道仿真是單位舵偏角產(chǎn)生的鉸鏈力矩,TM=L/R為電動機的電氣時間常數(shù),則舵機在有載情況下的傳遞函數(shù)為:

基于PID控制的導(dǎo)彈分通道仿真

2.2.2 舵回路

舵面的鉸鏈力矩對舵機的影響很大,飛行控制系統(tǒng)采用閉環(huán)回路設(shè)計,消除其影響。舵回路一般采用位置和速度兩種反饋補償方式消除鉸鏈力矩對其的影響。

位置反饋的傳遞函數(shù)為:

基于PID控制的導(dǎo)彈分通道仿真

當(dāng)基于PID控制的導(dǎo)彈分通道仿真。因此,引入較強反饋,電機輸出轉(zhuǎn)交正比于輸入電壓,與反饋量成正比,而與鉸鏈力矩的大小無關(guān)。

速度反饋的傳遞函數(shù)為:

基于PID控制的導(dǎo)彈分通道仿真

根據(jù)以上分析,引入較強速度反饋時,則電機輸出角速度正比于輸入電壓,而與飛行狀態(tài)即鉸鏈力矩的大小無關(guān)。

因此,舵機位置控制系統(tǒng)的系統(tǒng)結(jié)構(gòu)如圖2所示。

基于PID控制的導(dǎo)彈分通道仿真

 

3 分通道PID控制

導(dǎo)彈飛行姿態(tài)是通過控制導(dǎo)彈的3個舵面(即升降舵、方向舵、滾動舵)的偏轉(zhuǎn),改變舵面的空氣動力特性,形成圍繞導(dǎo)彈質(zhì)心的旋轉(zhuǎn)矩,實現(xiàn)飛行姿態(tài)的改變。角位置控制分為3個通道,俯仰通道(控制俯仰角)、偏航通道(控制偏航角)、滾動通道(控制滾動角)。

3.1 舵機的PID控制

根據(jù)圖2所示的舵機位置控制系統(tǒng)結(jié)構(gòu)框圖,其中電流環(huán)節(jié)采用電流計反饋,轉(zhuǎn)速反饋用速測發(fā)電機,位置反饋用光電編碼器。舵機采用三閉環(huán)控制設(shè)計,即電流環(huán),轉(zhuǎn)速環(huán)和位置環(huán)。可用“臨界比例度法”初步確定PID參數(shù)。此方法適用于已知對象傳遞函數(shù)的場合,閉合的控制系統(tǒng)中將調(diào)節(jié)器置于純比例作用下。從大到小逐漸改變調(diào)節(jié)器的比例度,得到等幅振蕩的過渡過程。此時的比例度成為臨界比例度δk,相鄰兩個波峰間的時間間隔稱為臨界振蕩周期Tk,由此計算出各個參數(shù),即Kp、Ti、Td的值。

3.2 縱向通道控制

傳統(tǒng)的控制方案是將舵機簡化為一個放大環(huán)節(jié),系統(tǒng)僅存在角速度反饋,其縱向通道傳遞函數(shù)為:

基于PID控制的導(dǎo)彈分通道仿真

式中,KM為傳遞系數(shù),TM為時間常數(shù),ξM為相對阻尼系數(shù),T1為氣動力常數(shù)。

在設(shè)計精確考慮舵機環(huán)節(jié)的縱向通道時,需加入PID校正環(huán)節(jié),分析系統(tǒng)使其滿足設(shè)計要求,圖3為其控制系統(tǒng)結(jié)構(gòu)框圖。

基于PID控制的導(dǎo)彈分通道仿真

3.3 橫向通道控制

當(dāng)滾動通道的輸入指令為零時,即保持滾動角和角速度為零,則消除了俯仰通道和偏航通道的耦合作用,可分別控制3個通道。此時,對稱結(jié)構(gòu)導(dǎo)彈的俯仰通道和偏航通道的控制基本相同。

3.4 滾動通道控制

將舵機環(huán)節(jié)引入滾動通道,與縱向通道及航向通道類似,引入PID校正環(huán)節(jié),分析系統(tǒng),其角速度傳遞函數(shù)為:

基于PID控制的導(dǎo)彈分通道仿真

式中,KMx為傳遞系數(shù),TMx為傾斜時間常數(shù)。

4 仿真結(jié)果

為驗證控制方案的正確性和控制效果,則給定以下導(dǎo)彈參數(shù):KM=0.171 7(1/s)、TM=0.085 0(s)、ξM=0.111 2、T1=6.521 7(s)、KMx=170.778 9、TMx=1.006 3(s)分別對舵機系統(tǒng)、縱向通道系統(tǒng)、橫向通道系統(tǒng)、滾動通道系統(tǒng)加入單位階躍信號進(jìn)行數(shù)字仿真,并對傳統(tǒng)控制系統(tǒng)進(jìn)行仿真,對比控制結(jié)果。圖4為舵機系統(tǒng)時域階躍響應(yīng)曲線。由圖4仿真曲線看出,超調(diào)量9.5%,上升時間41.9 ms,調(diào)節(jié)時間(2%誤差帶)88.8 ms,穩(wěn)態(tài)誤差為0。

基于PID控制的導(dǎo)彈分通道仿真

圖5為縱向通道時域階躍響應(yīng)曲線,從圖5仿真曲線可看出,在精確考慮舵機環(huán)節(jié)情況下,PID校正環(huán)節(jié)縱向通道時域階躍響應(yīng)曲線反應(yīng)良好,超調(diào)量11.4%,上升時間170.6 ms調(diào)節(jié)時間(2%誤差帶)356.3 ms,穩(wěn)態(tài)誤差為0。

基于PID控制的導(dǎo)彈分通道仿真

圖6為橫向通道時域階躍響應(yīng)曲線。從圖6仿真曲線看出,在精確考慮舵機環(huán)節(jié)情況下,PID校正環(huán)節(jié)橫向通道時域階躍響應(yīng)曲線反應(yīng)良好,超調(diào)量11.4%,上升時間168.3 ms調(diào)節(jié)時間(2%誤差帶)347.1 ms,穩(wěn)態(tài)誤差為0。

基于PID控制的導(dǎo)彈分通道仿真

圖7為滾轉(zhuǎn)通道時域階躍響應(yīng)曲線。從圖7的仿真曲線可看出,在精確考慮舵機環(huán)節(jié)的情況下,PID校正環(huán)節(jié)滾轉(zhuǎn)通道的時域階躍響應(yīng)曲線反應(yīng)良好,超調(diào)量9.81%,上升時間為178.6 ms,調(diào)節(jié)時間(2%誤差帶)397.1 ms,穩(wěn)態(tài)誤差為0。

基于PID控制的導(dǎo)彈分通道仿真

5 結(jié)論

本文利用臨界比例度法得到PID參數(shù),利用MATLAB/Simulink進(jìn)行時域仿真,從仿真結(jié)果看,該PID分通道控制方法可以提高傳統(tǒng)氣動舵導(dǎo)彈控制系統(tǒng)的準(zhǔn)確性、快速性及穩(wěn)定性。當(dāng)然這只是給出與傳統(tǒng)控制方案相比較的結(jié)果,實際的參數(shù)還要在實物仿真中不斷調(diào)試,并對控制系統(tǒng)修正改進(jìn),以得到令人滿意的控制效果。仿真結(jié)果表明,各通道系統(tǒng)反映良好,能夠?qū)崿F(xiàn)實時控制要求。

 

作者:電子設(shè)計工程 合作媒體:電子設(shè)計工程 編輯:顧北

 

 

 
 熱點技術(shù)
普通技術(shù) “5G”,真的來了!牛在哪里?
普通技術(shù) 5G,是偽命題嗎?
普通技術(shù) 云視頻會議關(guān)鍵技術(shù)淺析
普通技術(shù) 運營商語音能力開放集中管理方案分析
普通技術(shù) 5G網(wǎng)絡(luò)商用需要“無憂”心
普通技術(shù) 面向5G應(yīng)運而生的邊緣計算
普通技術(shù) 簡析5G時代四大關(guān)鍵趨勢
普通技術(shù) 國家網(wǎng)信辦就《數(shù)據(jù)安全管理辦法》公開征求意見
普通技術(shù) 《車聯(lián)網(wǎng)(智能網(wǎng)聯(lián)汽車)直連通信使用5905-5925MHz頻段管理規(guī)定(
普通技術(shù) 中興通訊混合云解決方案,滿足5G多元業(yè)務(wù)需求
普通技術(shù) 大規(guī)模MIMO將帶來更多無線信道,但也使無線信道易受攻擊
普通技術(shù) 蜂窩車聯(lián)網(wǎng)的標(biāo)準(zhǔn)及關(guān)鍵技術(shù)及網(wǎng)絡(luò)架構(gòu)的研究
普通技術(shù) 4G與5G融合組網(wǎng)及互操作技術(shù)研究
普通技術(shù) 5G中CU-DU架構(gòu)、設(shè)備實現(xiàn)及應(yīng)用探討
普通技術(shù) 無源光網(wǎng)絡(luò)承載5G前傳信號可行性的研究概述
普通技術(shù) 面向5G中傳和回傳網(wǎng)絡(luò)承載解決方案
普通技術(shù) 數(shù)據(jù)中心布線系統(tǒng)可靠性探討
普通技術(shù) 家庭互聯(lián)網(wǎng)終端價值研究
普通技術(shù) 鎏信科技CEO劉舟:從連接層構(gòu)建IoT云生態(tài),聚焦CMP是關(guān)鍵
普通技術(shù) SCEF引入需求分析及部署應(yīng)用
  版權(quán)與免責(zé)聲明: ① 凡本網(wǎng)注明“合作媒體:通信界”的所有作品,版權(quán)均屬于通信界,未經(jīng)本網(wǎng)授權(quán)不得轉(zhuǎn)載、摘編或利用其它方式使用。已經(jīng)本網(wǎng)授權(quán)使用作品的,應(yīng)在授權(quán)范圍內(nèi)使用,并注明“來源:通信界”。違反上述聲明者,本網(wǎng)將追究其相關(guān)法律責(zé)任。 ② 凡本網(wǎng)注明“合作媒體:XXX(非通信界)”的作品,均轉(zhuǎn)載自其它媒體,轉(zhuǎn)載目的在于傳遞更多信息,并不代表本網(wǎng)贊同其觀點和對其真實性負(fù)責(zé)。 ③ 如因作品內(nèi)容、版權(quán)和其它問題需要同本網(wǎng)聯(lián)系的,請在一月內(nèi)進(jìn)行。
通信視界
華為余承東:Mate30總體銷量將會超過兩千萬部
趙隨意:媒體融合需積極求變
普通對話 苗圩:建設(shè)新一代信息基礎(chǔ)設(shè)施 加快制造業(yè)數(shù)字
普通對話 華為余承東:Mate30總體銷量將會超過兩千萬部
普通對話 趙隨意:媒體融合需積極求變
普通對話 韋樂平:5G給光纖、光模塊、WDM光器件帶來新機
普通對話 安筱鵬:工業(yè)互聯(lián)網(wǎng)——通向知識分工2.0之路
普通對話 庫克:蘋果不是壟斷者
普通對話 華為何剛:挑戰(zhàn)越大,成就越大
普通對話 華為董事長梁華:盡管遇到外部壓力,5G在商業(yè)
普通對話 網(wǎng)易董事局主席丁磊:中國正在引領(lǐng)全球消費趨
普通對話 李彥宏:無人乘用車時代即將到來 智能交通前景
普通對話 中國聯(lián)通研究院院長張云勇:雙輪驅(qū)動下,工業(yè)
普通對話 “段子手”楊元慶:人工智能金句頻出,他能否
普通對話 高通任命克里斯蒂安諾·阿蒙為公司總裁
普通對話 保利威視謝曉昉:深耕視頻技術(shù) 助力在線教育
普通對話 九州云副總裁李開:幫助客戶構(gòu)建自己的云平臺
通信前瞻
楊元慶:中國制造高質(zhì)量發(fā)展的未來是智能制造
對話亞信科技CTO歐陽曄博士:甘為橋梁,攜"電
普通對話 楊元慶:中國制造高質(zhì)量發(fā)展的未來是智能制造
普通對話 對話亞信科技CTO歐陽曄博士:甘為橋梁,攜"電
普通對話 對話倪光南:“中國芯”突圍要發(fā)揮綜合優(yōu)勢
普通對話 黃宇紅:5G給運營商帶來新價值
普通對話 雷軍:小米所有OLED屏幕手機均已支持息屏顯示
普通對話 馬云:我挑戰(zhàn)失敗心服口服,他們才是雙11背后
普通對話 2018年大數(shù)據(jù)產(chǎn)業(yè)發(fā)展試點示范項目名單出爐 2
普通對話 陳志剛:提速又降費,中國移動的兩面精彩
普通對話 專訪華為終端何剛:第三代nova已成為爭奪全球
普通對話 中國普天陶雄強:物聯(lián)網(wǎng)等新經(jīng)濟(jì)是最大機遇
普通對話 人人車?yán)罱。航衲臧l(fā)力金融 拓展汽車后市場
普通對話 華為萬飚:三代出貴族,PC產(chǎn)品已走在正確道路
普通對話 共享退潮單車入冬 智享單車卻走向盈利
普通對話 Achronix發(fā)布新品單元塊 推動eFPGA升級
普通對話 金柚網(wǎng)COO邱燕:天吳系統(tǒng)2.0真正形成了社保管